Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Exp Eye Res ; 242: 109881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554800

RESUMEN

The retinal ganglion cells (RGCs) serve as the critical pathway for transmitting visual information from the retina to the brain, yet they can be dramatically impacted by diseases such as glaucoma. When investigating disease processes affecting RGCs in mouse models, accurately quantifying affected cells becomes essential. However, the use of pan RGC markers like RBPMS or THY1 presents challenges in accurate total cell counting. While Brn3a serves as a reliable RGC nuclear marker for automated counting, it fails to encompass all RGC subtypes in mice. To address this limitation and enable precise automated counting, our research endeavors to develop a method for labeling nuclei in all RGC subtypes. Investigating RGC subtypes labeled with the nuclear marker POU6F2 revealed that numerous RGCs unlabeled by Brn3a were, in fact, labeled with POU6F2. We hypothesize that using antibodies against both Brn3a and POU6F2 would label virtually all RGC nuclei in the mouse retina. Our experiments confirmed that staining retinas with both markers resulted in the labeling of all RGCs. Additionally, when using the cell body marker RBPMS known to label all mouse RGCs, all RBPMS-labeled cells also exhibited Brn3a or POU6F2 labeling. This combination of Brn3a and POU6F2 antibodies provides a pan-RGC nuclear stain, facilitating accurate automated counting by labeling cell nuclei in the retina.


Asunto(s)
Núcleo Celular , Ratones Endogámicos C57BL , Células Ganglionares de la Retina , Factor de Transcripción Brn-3A , Animales , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Ratones , Recuento de Células , Núcleo Celular/metabolismo , Factor de Transcripción Brn-3A/metabolismo , Coloración y Etiquetado/métodos , Biomarcadores/metabolismo
2.
Funct Integr Genomics ; 23(4): 334, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962640

RESUMEN

Glioma is the most common malignancy in the central nervous system. This study aims to disclose the impacts of Xihuang pill (XHP), a traditional Chinese formula, on glioma cell pyroptosis and relevant molecular mechanism. U251 and SHG-44 cells were treated with XHP alone or together with oe-POU4F1 and sh-STAT3. CCK8 assay detected the viability, flow cytometry evaluated pyroptosis, and microscopy observed cell morphology. LDH release was determined by the LDH kit and the levels of IL-1ß and IL-18 were detected by ELISA. Immunofluorescence showed NLRP3 expression in glioma cells and western blotting measured the levels of POU4F1, STAT3, NLRP3, ASC, cleaved caspase-1, and IL-1ß. The binding of POU4F1 to STAT3 was verified. Primary glioma model was established to observe tumor change by in vivo imaging, determine the levels of Ki67 and NLRP3 by immunochemistry, and detect relevant protein levels by western blotting. XHP treatment alone downregulated POU4F1 and STAT3 levels, aroused pyroptotic appearance in glioma cells such as ballooning swelling, reduced cell viability and number of pyroptotic cells, increased LDH release and IL-1ß and IL-18 levels, formed NLRP3 sports in cells, and elevated the levels of pyroptosis-related proteins. However, POU4F1 overexpression or STAT3 silencing suppressed XHP-promoted pyroptosis. Mechanistically, POU4F1 acted as a transcription factor of STAT3 and regulated its transcription. In primary glioma models, XHP enhanced glioma cell pyroptosis and blocked glioma growth. XHP facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis.


Asunto(s)
Glioma , Interleucina-18 , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Glioma/tratamiento farmacológico , Glioma/genética , Factor de Transcripción Brn-3A , Factor de Transcripción STAT3/genética
3.
Exp Eye Res ; 226: 109310, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400286

RESUMEN

Immunofluorescence is used in numerous research areas including eye research to detect specific antigens in cells and tissues. One limitation is that fluorescent signal can fade, causing detection problems if data recording was not completed in a timely manner or if additional data acquisition is required. The ability to repeat immunostaining for the same antigen after initial fluorescence has faded may require time-consuming and potentially damaging steps to remove primary antibodies. Our studies assessed whether immunofluorescence could be reapplied to previously labeled retinal ganglion cells (RGCs). To examine whether immunostaining of Brn3a, a commonly used RGC marker, could be repeated in retinas with previously faded immunostaining, retinal whole mounts were labeled with anti-Brn3a primary antibodies and green fluorescent secondary antibodies, then allowed to fade over time. Faded retinas were restained with anti-Brn3a antibody followed by secondary antibody, or with secondary antibody alone. Results show restaining with anti-Brn3a primary antibody followed by Alexa-fluor green secondary antibody is effective for RGC detection. Repeat RGC labeling improved the clarity of staining compared with original staining prior to fading, with significant reduction in the percentage of blurry/out of focus fluorescent cells (6 vs 26%); whereas, repeat application of secondary antibody alone was not effective. Preflattening retinas under a coverslip prior to initial Brn3a staining also increased the clarity of staining, and facilitated significantly more accurate automated counting of RGCs. Findings suggest Brn3a antigen remains accessible for repeat immunofluorescence labeling after original staining fades. Staining retinas after flattening tissue may enhance the clarity of staining and accuracy of automated RGC counting. Repeat immunofluorescence staining, without the need to strip off prior bound antibodies, may be useful in other tissues as well and warrants future examination.


Asunto(s)
Retina , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Técnica del Anticuerpo Fluorescente , Coloración y Etiquetado , Factor de Transcripción Brn-3A/metabolismo
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055045

RESUMEN

The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasa 2/metabolismo , Melanocitos/metabolismo , Melanoma/etiología , Melanoma/metabolismo , Factor de Transcripción Brn-3A/genética , Línea Celular , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Melanocitos/patología , Melanoma/patología , Factor de Transcripción Brn-3A/metabolismo
5.
J Diabetes Res ; 2021: 9765119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805414

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness in working-age populations. Proper in vitro DR models are crucial for exploring pathophysiology and identifying novel therapeutic targets. This study establishes a rational in vitro diabetic retinal neuronal-endothelial dysfunction model and a comprehensive downstream validation system. METHODS: Human retinal vascular endothelial cells (HRMECs) and retinal ganglion cells (RGCs) were treated with different glucose concentrations with mannitol as matched osmotic controls. Cell proliferation and viability were evaluated by the Cell Counting Kit-8. Cell migration was measured using a transwell migration assay. Cell sprouting was assessed by a tube formation assay. The VEGF expression was assessed by ELISA. RGCs were labeled by neurons and RGC markers TUJ1 and BRN3A for quantitative and morphological analysis. Apoptosis was detected using PI/Hoechst staining and TUNEL assay and quantified by ImageJ. RESULTS: Cell proliferation and migration in HRMECs were significantly higher in the 25 mM glucose-treated group (p < 0.001) but lower in the 50 mM and 100 mM groups (p < 0.001). The permeability and the apoptotic index in HRMECs were statistically higher in the 25 mM, 50 mM, and 100 mM groups (p < 0.05). The tube formation assay found that all the parameters were significantly higher in the 25 mM and 50 mM groups (p < 0.001) concomitant with the elevated VEGFA expression in HRMECs (p = 0.016). Cell viability was significantly lower in the 50 mM, 100 mM, and 150 mM groups in RGCs (p 50mM = 0.013, p 100mM = 0.019, and p 150mM = 0.002). Apoptosis was significantly elevated, but the proportion of RGCs with neurite extension was significantly lower in the 50 mM, 100 mM, and 150 mM groups (p 50mM < 0.001, p 100mM < 0.001, and p 150mM < 0.001). CONCLUSIONS: We have optimized glucose concentrations to model diabetic retinal endothelial (25-50 mM) or neuronal (50-100 mM) dysfunction in vitro, which have a wide range of downstream applications.


Asunto(s)
Retinopatía Diabética/patología , Células Endoteliales/efectos de los fármacos , Glucosa/toxicidad , Degeneración Nerviosa , Células Ganglionares de la Retina/efectos de los fármacos , Neovascularización Retiniana/patología , Vasos Retinianos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Factor de Transcripción Brn-3A/metabolismo , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Exp Eye Res ; 213: 108853, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800481

RESUMEN

PURPOSE: The roles of vascular dysfunction and chronic stress have been extensively discussed in the pathophysiology of glaucoma. Our aim was to test whether chronic stress causes retinal vascular dysfunction and therewith induces retinal ganglion cells (RGCs) loss. METHODS: Twelve mice underwent chronic social defeat (CSD) stress, while 12 mice received control treatment only. Intraocular pressure (IOP) was measured with a rebound tonometer. Blood plasma corticosterone concentration and adrenal gland weight were used to assess stress levels. Brn-3a staining in retinas and PPD staining in optic nerve cross sections were conducted to assess the survival of RGCs and axons respectively. The ET-1 and α-SMA levels were determined in retina. Retinal vascular autoregulation, functional response to various vasoactive agents and vascular mechanics were measured using video microscopy. RESULTS: No significant difference in IOP levels was observed during and after CSD between CSD mice and controls. CSD stress caused hypercortisolemia 2 days post-CSD. However, increased corticosterone levels went back to normal 8 months after CSD. CSD-exposed mice developed adrenal hyperplasia 3 days post-CSD, which was normalized by 8 months. RGC and axon survival were similar between CSD mice and controls. However, CSD stress caused irreversible, impaired autoregulation and vascular dysfunction of retinal arterioles in CSD mice. In addition, impaired maximal dilator capacity of retinal arterioles was observed 8 months post-CSD rather than 3 days post-CSD. Remarkably, ET-1 levels were increased 3 days post-CSD while α-SMA levels were decreased 8 months post-CSD. CONCLUSIONS: We found that CSD stress does not cause IOP elevation, nor loss of RGCs and their axons. However, it strikingly causes irreversible impaired autoregulation and endothelial function in murine retinal arterioles. In addition, CSD changed vascular mechanics on a long-term basis. Increased ET-1 levels and loss of pericytes in retina vessels may involve in this process.


Asunto(s)
Arteria Retiniana/fisiopatología , Enfermedades de la Retina/fisiopatología , Células Ganglionares de la Retina/patología , Derrota Social , Estrés Psicológico/fisiopatología , Actinas/metabolismo , Hiperplasia Suprarrenal Congénita/fisiopatología , Animales , Supervivencia Celular , Enfermedad Crónica , Corticosterona/sangre , Modelos Animales de Enfermedad , Trastorno del Desarrollo Sexual 46,XY/fisiopatología , Endotelina-1/metabolismo , Presión Intraocular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Hipertensión Ocular/fisiopatología , Nervio Óptico/fisiopatología , Arteria Retiniana/metabolismo , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Estrés Psicológico/metabolismo , Tonometría Ocular , Factor de Transcripción Brn-3A/metabolismo , Grabación en Video
7.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830387

RESUMEN

Glaucoma is an optic neuropathy in which the degeneration of retinal ganglion cells (RGCs) results in irreversible vison loss. Therefore, neuroprotection of RGCs from glaucomatous afflictions is crucial for glaucoma treatment. In this study, we aimed to investigate the beneficial effects of statins in the protection of RGCs using a rat model. Glaucomatous injury was induced in rats by chronic ocular hypertension (OHT) achieved after performing a circumlimbal suture. The rats were given either statins such as simvastatin and atorvastatin or a solvent weekly for 6 weeks. Retina sections underwent hematoxylin and eosin, Brn3a, or cleaved casepase-3 staining to evaluate RGC survival. In addition, modulation of glial activation was assessed. While the retinas without statin treatment exhibited increased RGC death due to chronic OHT, statins promoted the survival of RGCs and reduced apoptosis. Statins also suppressed chronic OHT-mediated glial activation in the retina. Our results demonstrate that statins exert neuroprotective effects in rat retinas exposed to chronic OHT, which may support the prospect of statins being a glaucoma treatment.


Asunto(s)
Glaucoma/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipertensión Ocular/tratamiento farmacológico , Degeneración Retiniana/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Glaucoma/genética , Glaucoma/patología , Humanos , Presión Intraocular/efectos de los fármacos , Neuroprotección/genética , Fármacos Neuroprotectores/farmacología , Hipertensión Ocular/genética , Hipertensión Ocular/patología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/patología , Ratas , Retina/efectos de los fármacos , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Factor de Transcripción Brn-3A/química , Factor de Transcripción Brn-3A/aislamiento & purificación
8.
Neural Dev ; 16(1): 5, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548095

RESUMEN

BACKGROUND: While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. METHODS: Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. RESULTS: We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. CONCLUSIONS: Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue.


Asunto(s)
Receptores de Factor de Crecimiento Nervioso , Células Ganglionares de la Retina , Animales , Ratones , Retina , Factor de Transcripción Brn-3A/genética
9.
Exp Eye Res ; 210: 108694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245756

RESUMEN

PURPOSE: To analyze responses of different RGC populations to left intraorbital optic nerve transection (IONT) and intraperitoneal (i.p.) treatment with 7,8-Dihydroxyflavone (DHF), a potent selective TrkB agonist. METHODS: Adult albino Sprague-Dawley rats received, following IONT, daily i.p. injections of vehicle (1%DMSO in 0.9%NaCl) or DHF. Group-1 (n = 58) assessed at 7days (d) the optimal DHF amount (1-25 mg/kg). Group-2, using freshly dissected naïve or treated retinas (n = 28), investigated if DHF treatment was associated with TrkB activation using Western-blotting at 1, 3 or 7d. Group-3 (n = 98) explored persistence of protection and was analyzed at survival intervals from 7 to 60d after IONT. Groups 2-3 received daily i.p. vehicle or DHF (5 mg/kg). Retinal wholemounts were immunolabelled for Brn3a and melanopsin to identify Brn3a+RGCs and m+RGCs, respectively. RESULTS: Optimal neuroprotection was achieved with 5 mg/kg DHF and resulted in TrkB phosphorylation. The percentage of surviving Brn3a+RGCs in vehicle treated rats was 60, 28, 18, 13, 12 or 8% of the original value at 7, 10, 14, 21, 30 or 60d, respectively, while in DHF treated retinas was 94, 70, 64, 17, 10 or 9% at the same time intervals. The percentages of m+RGCs diminished by 7d-13%, and recovered by 14d-38% in vehicle-treated and to 48% in DHF-treated retinas, without further variations. CONCLUSIONS: DHF neuroprotects Brn3a + RGCs and m + RGCs; its protective effects for Brn3a+RGCs are maximal at 7 days but still significant at 21d, whereas for m+RGCs neuroprotection was significant at 14d and permanent.


Asunto(s)
Flavonas/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Receptor trkB/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axotomía , Western Blotting , Supervivencia Celular/fisiología , Femenino , Inmunohistoquímica , Inyecciones Intraperitoneales , Neuroprotección , Nervio Óptico/fisiopatología , Nervio Óptico/cirugía , Fosforilación , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Opsinas de Bastones/metabolismo , Factor de Transcripción Brn-3A/metabolismo
10.
Invest Ophthalmol Vis Sci ; 62(7): 13, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106210

RESUMEN

Purpose: The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice. Methods: Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining. Results: Comparison of the change in each group from baseline for OCT and PERG was performed. There was a significant difference in the J:DOΔOCT compared to C57BL/6J mice (P = 0.004), but not compared to BALB/cByJ (P = 0.21). There was a significant difference in the variance of the ΔOCT in J:DO compared to both C57BL/6J and BALB/cByJ mice. The baseline PERG amplitude was 20.33 ± 9.32 µV, which decreased an average of -4.14 ± 12.46 µV following TBI. Baseline RGC complex + RNFL thickness was 70.92 ± 4.52 µm, which decreased an average of -1.43 ± 2.88 µm following blast exposure. There was not a significant difference in the ΔPERG between J:DO and C57BL/6J (P = 0.13), although the variances of the groups were significantly different. Blast exposure in J:DO mice results in a density change of 558.6 ± 440.5 BRN3A-positive RGCs/mm2 (mean ± SD). Conclusions: The changes in retinal outcomes had greater variance in outbred mice than what has been reported, and largely replicated herein, for inbred mice. These results demonstrate that the RGC response to blast injury is highly dependent upon genetic background.


Asunto(s)
Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo , Retina , Células Ganglionares de la Retina/fisiología , Estrés Fisiológico/fisiología , Factor de Transcripción Brn-3A/genética , Animales , Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Electrorretinografía/métodos , Variación Genética , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Retina/patología , Retina/fisiología , Tomografía de Coherencia Óptica/métodos
11.
Invest Ophthalmol Vis Sci ; 62(6): 13, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33978676

RESUMEN

Purpose: The goal of this study was to determine whether JNK2 played a causative role in endothelin-mediated loss of RGCs in mice. Methods: JNK2-/- and wild type (C57BL/6) mice were intravitreally injected in one eye with 1 nmole of ET-1, whereas the contralateral eye was injected with the vehicle. At two time points (two hours and 24 hours) after the intravitreal injections, mice were euthanized, and phosphorylated c-Jun was assessed in retinal sections. In a separate set of experiments, JNK2-/- and wild type mice were intravitreally injected with either 1 nmole of ET-1 or its vehicle and euthanized seven days after injection. Retinal flat mounts were stained with antibodies to the RGC marker, Brn3a, and surviving RGCs were quantified. Axonal degeneration was assessed in paraphenylenediamine stained optic nerve sections. Results: Intravitreal ET-1 administration produced a significant increase in immunostaining for phospho c-Jun in wild type mice, which was appreciably lower in the JNK2 -/- mice. A significant (P < 0.05) 26% loss of RGCs was found in wild type mice, seven days after injection with ET-1. JNK2-/- mice showed a significant protection from RGC loss following ET-1 administration, compared to wild type mice injected with ET-1. A significant decrease in axonal counts and an increase in the collapsed axons was found in ET-1 injected wild type mice eyes. Conclusions: JNK2 appears to play a major role in ET-1 mediated loss of RGCs in mice. Neuroprotective effects in JNK2-/- mice following ET-1 administration occur mainly in the soma and not in the axons of RGCs.


Asunto(s)
Endotelina-1/toxicidad , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Degeneración Retiniana/inducido químicamente , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axones/patología , Biomarcadores/metabolismo , Supervivencia Celular , Femenino , Inmunohistoquímica , Inyecciones Intravítreas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Óptico/patología , Fosforilación , Degeneración Retiniana/enzimología , Células Ganglionares de la Retina/enzimología , Factor de Transcripción Brn-3A/metabolismo
12.
Hum Mutat ; 42(6): 685-693, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33783914

RESUMEN

De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.


Asunto(s)
Ataxia/genética , Hipotonía Muscular/genética , Factor de Transcripción Brn-3A/genética , Temblor/genética , Adulto , Ataxia/complicaciones , Ataxia/diagnóstico , Ataxia/patología , Niño , Preescolar , Femenino , Haploinsuficiencia , Humanos , Imagen por Resonancia Magnética , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/diagnóstico , Mutación Missense , Estudios Retrospectivos , Síndrome , Temblor/complicaciones , Temblor/diagnóstico , Estados Unidos , Secuenciación del Exoma , Adulto Joven
13.
PLoS One ; 16(3): e0243186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33764998

RESUMEN

The rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION) is similar in many of its pathophysiological responses to clinical NAION. Like human NAION, there is significant variability in the severity of the lesion produced, and little is known of the parameters associated with rNAION induction severity or if pre- or early post-induction biomarkers can be identified that enable prediction of lesion severity and ultimate loss of retinal ganglion cells (RGCs). Adult male Sprague-Dawley outbred rats were evaluated for various parameters including physiological characteristics (heart rate, respiratory rate, temperature, hematocrit [Hct]), optic nerve head (ONH) appearance, pre- and post-induction mean diameter, and intravenous fluorescein and indocyanine green angiographic patterns of vascular leakage at 5 hours post-induction, performed using a spectral domain-optical coherence tomography (SD-OCT) instrument. Early changes were correlated with ultimate RGC loss by Brn3a (+) immunohistology. RGC loss also was correlated with the relative level of laser exposure. The severity of ONH edema 2d, but not 5hr, post induction was most closely associated with the degree of RGC loss, revealing a threshold effect, and consistent with a compartment syndrome where a minimum level of capillary compression within a tight space is responsible for damage. RGC loss increased dramatically as the degree of laser exposure increased. Neither physiological parameters nor the degree of capillary leakage 5hr post induction were informative as to the ultimate degree of RGC loss. Similar to human NAION, the rNAION model exhibits marked variability in lesion severity. Unlike clinical NAION, pre-induction ONH diameter likely does not contribute to ultimate lesion severity; however, cross-sectional ONH edema can be used as a biomarker 2d post-induction to determine randomization of subjects prior to inclusion in specific neuroprotection or neuroregeneration studies.


Asunto(s)
Biomarcadores/análisis , Neuropatía Óptica Isquémica/patología , Angiografía , Animales , Temperatura Corporal , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Masculino , Disco Óptico/anatomía & histología , Disco Óptico/diagnóstico por imagen , Neuropatía Óptica Isquémica/metabolismo , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Índice de Severidad de la Enfermedad , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo
14.
Curr Eye Res ; 46(10): 1509-1515, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33689532

RESUMEN

Purpose: Our lab has shown that conditionally disrupting the transcription factor activating protein 2ß (Tfap2b) gene, responsible for the activating protein-2ß (AP-2ß) transcription factor, exclusively in cranial neural crest cells (AP-2ß NCC KO), leads to anterior segment dysgenesis and a closed angle phenotype. The purpose of the current study is to determine if there is a progressive loss of retinal ganglion cells (RGCs) in the mutant over time and whether this loss was associated with macroglial activity changes and elevated intraocular pressure (IOP).Methods: Using the Cre-loxP system, we generated a conditional knockout of Tfap2b exclusively in cranial NCC (AP-2ß NCC KO). Immunohistochemistry was performed using anti-Brn3a, anti-GFAP and anti-Vimentin antibodies. IOP was measured using a tonometer and the data was analyzed using GraphPad Prism software. Brn3a and DAPI positive cells were counted using Image-J and statistical analysis was performed with GraphPad Prism software.Results: Our findings revealed that while no statistical difference in Brn3a expression was observed between wild-type and mutant mice at postnatal day (P) 4 or P10, at P40 (p < .01) and P42 (p < .0001) Brn3a expression was significantly reduced in the mutant retina at the region of the ONH. There was also increased expression of glial fibrillary acidic protein (GFAP) by Müller cells in the AP-2ß NCC KO mice at P35 and P40, indicating the presence of neuroinflammation. Moreover, increased IOP was observed starting at P35 and continuing at P40 and P42 (p < .0001 for all three ages examined).Conclusions: Together, these findings suggest that the retinal damage observed in the KO mouse becomes apparent by P40 after increased IOP was observed at P35 and progressed over time. The AP-2ß NCC KO mouse may therefore be a novel experimental model for glaucoma.


Asunto(s)
Glaucoma/diagnóstico , Cresta Neural/metabolismo , Enfermedades de la Retina/diagnóstico , Células Ganglionares de la Retina/patología , Factor de Transcripción AP-2/genética , Animales , Progresión de la Enfermedad , Electroforesis , Glaucoma/genética , Glaucoma/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Presión Intraocular/fisiología , Ratones , Ratones Noqueados , Microglía/patología , Reacción en Cadena de la Polimerasa , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Tonometría Ocular , Factor de Transcripción Brn-3A/metabolismo , Vimentina/metabolismo
15.
Curr Eye Res ; 46(5): 710-718, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33107352

RESUMEN

PURPOSE: Understanding molecular changes is essential for designing effective treatments for nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults older than 50 years. We investigated changes in the mitogen-activated protein kinase (MAPK) pathway after experimental AION and focused on dual specificity phosphatase 14 (Dusp14), an atypical MAPK phosphatase that is downstream of Krüppel-like transcription factor (KLF) 9-mediated inhibition of retinal ganglion cell (RGC) survival and axonal regeneration. MATERIALS AND METHODS: We induced severe AION in a photochemical thrombosis model in adult C57BL/6 wild-type and Dusp14 knockout mice. For comparison, some studies were performed using an optic nerve crush model. We assessed changes in MAPK pathway molecules using Western blot and immunohistochemistry, measured retinal thickness using optical coherence tomography (OCT), and quantified RGCs and axons using histologic methods. RESULTS: Three days after severe AION, there was no change in the retinal protein levels of MAPK ERK1/2, phosphorylated-ERK1/2 (pERK1/2), downstream effector Elk-1 and phosphatase Dusp14 on Western blot. Western blot analysis of purified RGCs after a more severe model using optic nerve crush also showed no change in Dusp14 protein expression. Because of the known importance of the Dusp14 and MAPK pathway in RGCs, we examined changes after AION in Dusp14 knockout mice. Three days after AION, Dusp14 knockout mice had significantly increased pERK1/2+, Brn3A+ RGCs on immunohistochemistry. Three weeks after AION, Dusp14 knockout mice had significantly greater preservation of retinal thickness, increased number of Brn3A+ RGCs on whole mount preparation, and increased number of optic nerve axons compared with wild-type mice. CONCLUSIONS: Genetic deletion of Dusp14, a MAPK phosphatase important in KFL9-mediated inhibition of RGC survival, led to increased activation of MAPK ERK1/2 and greater RGC and axonal survival after experimental AION. Inhibiting Dusp14 or activating the MAPK pathway should be examined further as a potential therapeutic approach to treatment of AION.Abbreviations: AION: anterior ischemic optic neuropathy; Dusp14: dual specific phosphatase 14; ERK1/2: extracellular signal-regulated kinases 1/2; Elk-1: ETS Like-1 protein; GCC: ganglion cell complex; GCL: ganglion cell layer; inner nuclear layer; KO: knockout; MAPK: mitogen-activated phosphokinase; OCT: optical coherence tomography; RGC: retinal ganglion cell; RNFL: retinal nerve fiber layer.


Asunto(s)
Axones/fisiología , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Nervio Óptico/fisiología , Neuropatía Óptica Isquémica/fisiopatología , Células Ganglionares de la Retina/citología , Animales , Western Blotting , Supervivencia Celular , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tomografía de Coherencia Óptica , Factor de Transcripción Brn-3A/metabolismo
16.
Neuromolecular Med ; 23(3): 371-382, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33185833

RESUMEN

Traumatic optic neuropathy (TON) is characterized by visual dysfunction after indirect or direct injury to the optic nerve following blunt head trauma. TON is associated with increased oxidative stress and inflammation resulting in retinal ganglion cell (RGC) death. Remote ischemic post-conditioning (RIC) has been shown to enhance endogenous protective mechanisms in diverse disease models including stroke, vascular cognitive impairment (VCI), retinal injury and optic nerve injury. However, the protective mechanisms underlying the improvement of retinal function and RGC survival after RIC treatment remain unclear. Here, we hypothesized that RIC therapy may be protective following TON by preventing RGC death, oxidative insult and inflammation in the mouse retina. To carry out the study, mice were divided in three different groups (Control, TON and TON + RIC). We harvested retinal tissue 5 days after TON induction for western blotting and histochemical analysis. We observed increased TON-induced retinal cell death compared with controls by cleaved caspase-3 immunohistochemistry. Furthermore, the TON cohort demonstrated increased TUNEL positive cells which were significantly attenuated by RIC. Immunofluorescence data showed that oxidative stress markers dihydroethidium (DHE), NOX-2 and nitrotyrosine expression were elevated in the TON group relative to controls and RIC therapy significantly reduced the expression level of these markers. Next, we found that the proinflammatory cytokine TNF-α was increased and anti-inflammatory IL-10 was decreased in plasma of TON animals, and RIC therapy reversed this expression level. Interestingly, western blotting of retinal tissue showed that RGC marker Brn3a and tight junction proteins (ZO-1 and Occludin), and AMPKα1 expression were downregulated in the TON group compared to controls. However, RIC significantly increased the expression levels of these proteins. Together these data suggest that RIC therapy activates endogenous protective mechanisms which may attenuate TON-induced oxidative stress and inflammation, and improves BRB integrity.


Asunto(s)
Poscondicionamiento Isquémico , Traumatismos del Nervio Óptico/terapia , Adenilato Quinasa/biosíntesis , Adenilato Quinasa/genética , Animales , Barrera Hematorretinal , Caspasa 3/biosíntesis , Caspasa 3/genética , Muerte Celular , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Miembro Posterior/irrigación sanguínea , Interleucina-10/sangre , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Modelos Animales , NADPH Oxidasa 2/análisis , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/prevención & control , Estrés Oxidativo , Células Ganglionares de la Retina/patología , Superóxidos/análisis , Factor de Transcripción Brn-3A/biosíntesis , Factor de Transcripción Brn-3A/genética , Factor de Necrosis Tumoral alfa/sangre , Tirosina/análogos & derivados , Tirosina/análisis
17.
Diabetologia ; 64(3): 693-706, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33319325

RESUMEN

AIMS/HYPOTHESIS: Diabetic retinopathy is characterised by retinal neurodegeneration and retinal vascular abnormalities, affecting one third of diabetic patients with disease duration of more than 10 years. Accumulated evidence suggests that serine racemase (SR) and D-serine are correlated with the pathogenesis of diabetic retinopathy and the deletion of the Srr gene reverses neurovascular pathologies in diabetic mice. Since D-serine content is balanced by SR synthesis and D-amino acid oxidase (DAAO) degradation, we examined the roles of DAAO in diabetic retinopathy and further explored relevant therapy. METHODS: Rats were used as a model of diabetes by i.p. injection of streptozotocin at the age of 2 months and blood glucose was monitored with a glucometer. Quantitative real-time PCR was used to examine Dao mRNA and western blotting to examine targeted proteins in the retinas. Bisulphite sequencing was used to examine the methylation of Dao mRNA promoter in the retinas. Intravitreal injection of DAAO-expressing adenovirus (AAV8-DAAO) was conducted one week before streptozotocin administration. Brain specific homeobox/POU domain protein 3a (Brn3a) immunofluorescence was conducted to indicate retinal ganglion cells at 3 months after virus injection. The permeability of the blood-retinal barrier was examined by Evans blue leakage from retinal capillaries. Periodic acid-Schiff staining and haematoxylin counterstaining were used to indicate retinal vasculature, which was further examined with double immunostaining at 7 months after virus injection. RESULTS: At the age of 12 months, DAAO mRNA and protein levels in retinas from diabetic animals were reduced to 66.2% and 70.4% of those from normal (control) animals, respectively. The Dao proximal promoter contained higher levels of methylation in diabetic than in normal retinas. Consistent with the observation, DNA methyltransferase 1 was increased in diabetic retinas. Injection of DAAO-expressing virus completely prevented the loss of retinal ganglion cells and the disruption of blood-retinal barrier in diabetic rats. Diabetic retinas contained retinal ganglion cells at a density of 54 ± 4/mm2, which was restored to 68 ± 9/mm2 by DAAO overexpression, similar to the levels in normal retinas. The ratio between the number of endothelial cells and pericytes in diabetic retinas was 6.06 ± 1.93/mm2, which was reduced to 3.42 ± 0.55/mm2 by DAAO overexpression; the number of acellular capillaries in diabetic retinas was 10 ± 5/mm2, which was restored to 6 ± 2/mm2 by DAAO overexpression, similar to the levels in normal retinas. Injection of the DAAO-expressing virus increased the expression of occludin and reduced gliosis, which were examined to probe the mechanism by which the disrupted blood-retinal barrier in diabetic rats was rescued and retinal neurodegeneration was prevented. CONCLUSIONS/INTERPRETATION: Altogether, overexpression of DAAO before the onset of diabetes protects against neurovascular abnormalities in retinas from diabetic rats, which suggests a novel strategy for preventing diabetic retinopathy. Graphical abstract.


Asunto(s)
Barrera Hematorretinal/enzimología , D-Aminoácido Oxidasa/biosíntesis , Retinopatía Diabética/prevención & control , Células Ganglionares de la Retina/enzimología , Animales , Barrera Hematorretinal/patología , Permeabilidad Capilar , D-Aminoácido Oxidasa/genética , Metilación de ADN , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/enzimología , Retinopatía Diabética/enzimología , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Inducción Enzimática , Masculino , Degeneración Nerviosa , Regiones Promotoras Genéticas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/patología , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo
18.
Aging (Albany NY) ; 12(22): 22814-22839, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33203797

RESUMEN

Aberrant promoter methylation and ensuing abnormal gene expression are important epigenetic mechanisms that contribute to colorectal oncogenesis. Yet, the prognostic significance of such methylation-driven genes in colorectal cancer (CRC) remains obscure. Herein, a total of 181 genes were identified as the methylation-driven molecular features of CRC by integrated analysis of the expression profiles and the matched DNA methylation data from The Cancer Genome Atlas (TCGA) database. Among them, a five-gene signature (POU4F1, NOVA1, MAGEA1, SLCO4C1, and IZUMO2) was developed as a risk assessment model for predicting the clinical outcomes in CRC. The Kaplan-Meier analysis and Harrell's C index demonstrated that the risk assessment model significantly distinguished the patients in high or low-risk groups (p-value < 0.0001 log-rank test, HR: 2.034, 95% CI: 1.419-2.916, C index: 0.655). The sensitivity and specificity were validated by the receiver operating characteristic (ROC) analysis. Furthermore, different pharmaceutical treatment responses were observed between the high-risk and low-risk groups. Indeed, the methylation-driven gene signature could act as an independent prognostic evaluation biomarker for assessing the OS of CRC patients and guiding the pharmaceutical treatment. Compared with known biomarkers, the methylation-driven gene signature could reveal cross-omics molecular features for improving clinical stratification and prognosis.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/terapia , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Antígenos Específicos del Melanoma/genética , Persona de Mediana Edad , Antígeno Ventral Neuro-Oncológico , Transportadores de Anión Orgánico/genética , Valor Predictivo de las Pruebas , Pronóstico , Proteínas de Unión al ARN/genética , Medición de Riesgo , Factores de Riesgo , Factor de Transcripción Brn-3A/genética
19.
Invest Ophthalmol Vis Sci ; 61(12): 7, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33030508

RESUMEN

Purpose: In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI. Methods: Male and female mice with null mutations in genes encoding IL-1α, IL-1ß, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury. To determine if genetic blockade of IL-1α, IL-1ß, or IL-1RI could prevent damage to RGCs, the function and structure of these cells were evaluated by pattern electroretinogram and optical coherence tomography, respectively, 5 weeks following blast or sham exposure. RGC survival was also quantitatively assessed via immunohistochemical staining of BRN3A at the completion of the study. Results: Our results showed that male and female WT mice had a similar response to blast-induced retinal injury. Generally, constitutive deletion of IL-1α, IL-1ß, or IL-1RI did not provide full protection from the effects of bTBI on visual outcomes; however, injured WT mice had significantly worse visual outcomes compared to the injured genetic knockout mice. Conclusions: Sex does not affect RGC outcomes after bTBI. The genetic studies suggest that deletion of these IL-1 pathway components confers some protection, but global deletion from birth did not result in a complete rescue.


Asunto(s)
Traumatismos por Explosión/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Regulación de la Expresión Génica/fisiología , Interleucina-1/genética , Células Ganglionares de la Retina/fisiología , Agudeza Visual/fisiología , Animales , Traumatismos por Explosión/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Supervivencia Celular/fisiología , Electrorretinografía , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Factores Sexuales , Tomografía de Coherencia Óptica , Factor de Transcripción Brn-3A/metabolismo
20.
Biochem Biophys Res Commun ; 533(3): 533-539, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32988584

RESUMEN

Over-expression of the human epidermal growth factor receptor-2 (HER2) is related to aggressive tumors and poor prognosis in breast cancer. Trastuzumab (TRA) resistance leads to tumor recurrence and metastasis, resulting in poor prognosis in HER2-positive breast cancer. POU Class 4 Homeobox 1 (POU4F1) is a member of the POU domain family transcription factors, and has a key role in regulating cancers. However, its effects on TRA-resistant HER2-positive breast cancer are still vague. In the present study, we found that POU4F1 expression was dramatically increased in clinical breast cancer specimens with TRA resistance. Higher POU4F1 was also detected in HER2-positive breast cancer cells with TRA resistance than that of the parental ones. Poor prognosis was detected in breast cancer patients with high POU4F1 expression. Under TRA treatment, POU4F1 knockdown significantly reduced the proliferative capacity of HER2-positive breast cancer cells with TRA resistance. POU4F1 silence also sensitized resistant HER-positive breast cancer cells to TRA treatment in vivo using a xenograft mouse model, along with the markedly reduced tumor growth rate and tumor weight. Moreover, we found that POU4F1 deletion greatly decreased the activation of mitogen-activated or extracellular signal-regulated protein kinase kinases 1 and 2 (MEK1/2) and extracellular-regulated kinase 1/2 (ERK1/2) signaling pathways in breast cancer cells with TRA resistance. Migration and invasion were also effectively hindered by POU4F1 knockdown in TRA-resistant HER2-positive breast cancer cells. Notably, we found that POU4F1 deletion-improved chemosensitivity of HER2-positive breast cancer cells with drug-resistance to TRA treatment was closely associated with the blockage of ERK1/2 signaling. Collectively, our findings reported a critical role of POU4F1 in regulating TRA resistance, and demonstrated the underlying molecular mechanisms in HER2-positive breast cancer. Thus, POU4F1 may be a promising prognostic and therapeutic target to develop effective treatment for overcoming TRA resistance.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Brn-3A/metabolismo , Trastuzumab/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica , Receptor ErbB-2/análisis , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...